日本中文免费_激情免费av_韩国国产福利视频一区_青青福利视频_婷婷丁香综合网_hd欧美free性xxx×护士

Plasma cleaning for UHV applications: particle accelerators
Release time : 2025-04-23
View volume : 639

Scan the code to browse this page on your phone

Plasma cleaning for UHV applications: particle accelerators  

Hyper-clean Surfaces

 

UHV critical components, such as those used extensively in surface science laboratories and particle accelerators, are required to meet strict cleanliness criteria of which pre-installation cleaning is an important step. Daresbury Laboratory based in the UK and a centre for worldwide particle accelerator technology, approached Henniker Plasma to look at the potential of oxygen plasma cleaning as part of the stringent pre-cleaning process.

Plasma cleaning was assessed by measurement of electron stimulated desorption yields. Together, we were then able to compare the results from using traditional solvent-based cleaning together with plasma cleaning.

 

Solvent Cleaning Technique 

A hydrofluoroether (HFE) type solvent was employed at Daresbury Laboratory as the primary cleaning solvent of choice, having been chosen from the outcome of earlier studies of the effects of various cleaning techniques on outgassing and electron stimulated desorption from stainless steel [1].

 

The steps used in the HFE procedure are as follows;

  1.  
  2. 1. Manual detergent wash
  3. 2. Rinse in de-mineralised water
  4. 3. 15 minutes of aqueous wash using a standard detergent
  5. 4. Rinse in de-mineralised water
  6. 5. 15-minute ultrasonic clean in HFE
  7. 6. 15-minute vapour clean in HFE
  8. 7. Rinse in de-mineralised water
  9. 8. Dry in the oven (80°C)

 

Plasma Cleaning

When gas atoms are ionised, the collision of high energy particles knocks electrons out of their orbits. This results in the characteristic “glow” or light associated with plasma. Plasmas contain many different species including atoms, molecules, ions, electrons, free radicals, metastables, and photons in the short wave ultraviolet (vacuum UV or VUV) range. Plasmas are generated in closed vessels at low pressures, typically < 1.0 Torr. The low pressure results in a long mean free path of the plasma species so that they remain reactive until contact with a surface. The overall chamber temperature at the commonly used power levels and pressures is close to room temperature.

The gas used in these experiments was oxygen. The VUV energy is effective in breaking the organic bonds (i.e., C-H, C-C, C=C, C-O, and C-N) of surface contaminants. This helps to break apart high molecular weight contaminants. A second cleaning action is carried out by the oxygen species created in the plasma (O2+, O2-, O3, O, O+, O-, ionised ozone, metastably-excited oxygen, and free electrons). These species react with organic contaminants to form H2O, CO, CO2, and lower molecular weight hydrocarbons. These compounds have relatively high vapour pressures and are easily evacuated from the chamber.

 

Measurement of Sample Cleanliness

Stainless steel samples were first contaminated with a variety of contaminants including oils, grease, fingerprints and marker pen. Sample cleanliness was then assessed by measuring the electron stimulated desorption yield, calculated by the throughput at the conductance:-  

Where Nm= number of desorbed molecules, Ne= number of incident electrons, qe= electron charge, kB= Boltzmann’s constant, T= chamber temperature, Iesd= drain current, Q= throughput.

 

Figure 1. ESD Experimental Arrangement

  •  
  • - Other essential features of the experiment were:
  • - Cylinder biased to +200V
  • - Coaxial electron source
  • - Variable conductance: 143 ltr.sec-1 (mass 28) for ESD
  • - Calibrated pressure measurement
  • - Sample drain current measured during ESD

Results and Discussion  

The results shown in Chart 1 demonstrate that there is a clear improvement in electron stimulated desorption yield (sample cleanliness) when plasma cleaning is used in addition to the solvent cleaning procedure described.

The measured electron stimulated desorption yield with the additional plasma cleaning step is almost the same as the yield from the uncontaminated samples. For this specific work, this result suggests that plasma cleaning could add benefits to vacuum components used in an accelerator environment due to the reduction in desorption yield and hence a smaller gas load to contend with.

The results of samples subjected to a reduced cleaning cycle in conjunction with plasma cleaning (ultrasonic HFE + plasma) are also better than the results obtained from the samples that had undergone the full HFE cleaning process. This suggests that the full HFE cleaning process could be reduced to just two stages, ultrasonic and plasma, and still produce samples of higher cleanliness.

Chart 1. Comparison of Cleaning Methods via Electron Stimulated Desorption Yield (molecules/electron)

 

The remaining samples (aqueous or vapour clean + plasma) all show similar results in that they are insufficient combinations of cleaning steps to produce UHV clean samples.

Our Solution

Using our bench-top plasma cleaner in combination with the traditional solvent-based cleaning routine described here produced cleaner surfaces, similar to those of uncontaminated surfaces, than solvent-based cleaning alone.

This example demonstrates that Plasma cleaning can

  1.  
  2. i) Reduce lengthy cleaning processes
  3. ii) Reduce the use of environmentally unfriendly solvents
  4. iii) Reduce the costs associated with handling, use and disposal of solvent-based cleaners.

 

The Daresbury Laboratories team worked closely with Henniker Plasma to ensure a solution which enhanced and determined their own objective in becoming a worldwide leader in particle accelerator technology. 

"Using our bench-top plasma cleaner in combination with the traditional solvent-based cleaning routine described here produced cleaner surfaces, than solvent-based cleaning alone."

——K.J.Middleman Daresbury.

 

Reference[1] K.J. Middleman, Vacuum 81 (2007) P793-798.

Source of the original text:

https://plasmatreatment.co.uk/knowledge-base/case-studies/132-plasma-cleaning-for-uhv-applications-particle-accelerators

上一篇:沒有了

LIST

下一篇:Researchers in China produce Ultra stable Semiconductor using Henniker HPT-100

Contact Us
Hong Kong 

Phone:+ 852 2755 6578

Address:Room 68,1/F, Sino Industrial Plaza, 9 Kai Cheung Road,
Kowloon Bay, Kowloon, Hong Kong

Shanghai 

Phone:400 886 0017

Address:8 / F, No. 3, Magnolia Environmental Plaza, Lane 251,
Songhuajiang Road, Yangpu District, Shanghai

? 2011-Now A&P Instrument Co., Ltd. All rights reserved

滬ICP備06031990號-1

滬公網安備31011002002121號

主站蜘蛛池模板: 成人欧美一区二区三区A片 亚洲精品成人网站在线 | 亚洲国产精品乱码一区二区三区 | 国产精品一区二区三区视频网站 | 91插插插插插插插 | 国产午夜亚洲精品 | 天天做天天爱夜夜爽毛片L 国产精久久久久久 | 国产女人高潮抽搐叫床视频 | 国产91精品看黄网站 | 熟妇人妻无乱码中文字幕真矢织江 | 奶头和荫蒂添的好舒服囗交 | 天天色综| 欧美成人一区二区三区在线观看 | 国产精品第二页 | 亚洲色大18成网站WWW | 亚洲精品免费av | 国产成人久久精品激情91 | 国产被窝福利一区二区 | 一本久久A精品一区二区 | 精品日产一区二区三区手机 | 久久久无码一区二区三区 | 国产一级影院 | 亚洲欧美精品一中文字幕 | 午夜一级黄色大片 | 自拍偷在线精品自拍偷无码专区 | 国产尤物av尤物在线观看 | 国产福利视频网站 | 暴力调教一区二区三区 | 99免费在线视频观看 | 播放灌醉水嫩大学生国内精品 | 婷婷亚洲综合小说图片 | av在线直接看 | 夜夜躁很很躁日日躁2020 | 国产区一区二区 | 欧洲区乱码一二三 | 性欧美69式xxxx | 国产又色又爽又黄又免费软件 | 欧美va免费精品高清在线 | 久久精品这里热有精品 | 蜜臀久久精品久久久久久酒店? | 韩剧《上流社会》在线观看 | 香蕉97超级碰碰碰视频 |